

10G SFP+ ZR 80km Optical Transceiver OTS-10G-ZR

Features

- ◎ Supports 10Gb/s serial optical interface
- ◎ Up to 80km transmission on SMF
- ◎ Cooled 1550nm EML laser and APD receiver
- ◎ Hot-pluggable SFP+ footprint
- ◎ SFI high speed electrical interface
- Built-in digital diagnostic functions
- ◎ Single +3.3V power supply
- $\odot~$ Power consumption less than 1.8 W
- ◎ Operating case temperature: -5~+70°C
- ◎ SFP+ MSA package with duplex LC connector

Applications

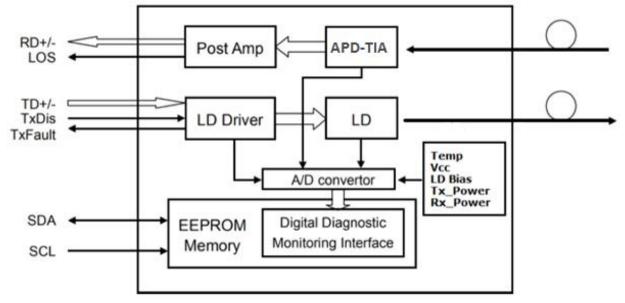
- ◎ 10GBASE-ZR/ZW 10G Ethernet
- Other optical links

Standard

- ◎ Compliant with SFF-8472 and SFP+ MSA
- ◎ Compliant to SFF-8431 and SFF-8432
- ◎ Compliant with IEEE 802.3ae 10GBASE-ZR/ZW
- ◎ Compliant with FCC 47 CFR Part 15, Class B
- ◎ Compliant with Telcordia GR-468-CORE
- RoHS Compliant

WWW.OPTORAY.COM

Table 1. Regulatory Compliance


Feature	Standard	Performance
Electrostatic Discharge(ESD)	MIL-STD-883E	Class 1(>1000V for SFI pins, >2000V
to the Electrical Pins	Method 3015.7	for other pins.)
Electrostatic Discharge (ESD)	IEC 61000-4-2	Compatible with standards
to the Duplex LC Receptacle	GR-1089-CORE	Compatible with standards
Electromagnetic nterference	FCC Part 15 Class B	
(EMI)	EN55022 Class B (CISPR 22B)	Compatible with standards
	VCCI Class B	
Immunity	IEC 61000-4-3	Compatible with standards
Laser Eye Safety	FDA 21CFR 1040.10 and 1040.11	Compatible with Class I laser product
RoHS	2002/95/EC 4.1&4.2	Compatible with standards
КОПЗ	2011/65/EU	Compatible with standards

Product Description

The SFP+ transceivers are high performance, cost effective modules supporting data rate of 10Gbps and 80km transmission distance with SMF.

The transceiver consists of three sections: a cooled 1550nm EML laser transmitter, a APD photodiode integrated with a trans-impedance preamplifier (TIA) and MCU control unit. All modules satisfy class I laser safety requirements.

The transceivers are compatible with SFP Multi-Source Agreement and SFF-8472 digital diagnostics functions.

Figure 1.Transceiver functional Block Diagram

Absolute Maximum Ratings

Table 2. Absolute Maximum Ratings

(Exceeding the limits below may damage the transceiver module permanently)

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Maximum Supply Voltage	Vcc	-0.5	-	+4.0	V	
Storage Temperature	Ts	-40	-	+85	°C	
Case Operating Temperature	TA	-10	-	+75	°C	
Relative Humidity	RH	5	-	85	%	1

Notes:

1. Non-condensing.

Recommend Operation Environment

Table 3.	Recommend	Operation	Environment
----------	-----------	-----------	-------------

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Data Rate	BR	-	10.3125	-	Gbps	
Power Supply Voltage	Vcc	3.13	3.3	3.47	V	
Power Supply Current	lcc	-	-	540	mA	
Power Dissipation	Pd	-	-	1.8	W	
Case Operating Temperature	Та	-5	-	+70	°C	
Transmission Distance	TD	-	-	80	km	1

Notes:

1. Measured with ITU-T G.652 SMF

Electricalptical Characteristics

Table 4. Electrical Characteristics(Top = -5 to +70 °C, Vcc = 3.13 to 3.47 V)

Parameter	Symbol	Min	Тур	Max	Unit	Notes	
Transmitter							
Differential Data Input Amplitude	VIN,P-P	180	-	850	mVpp	1	
Input Differential Impedance	Zin	90	100	110	Ω		
Transmitter Fault Output-High	Vон	2.4	-	Vcc	V		
Transmitter Fault Output-Low	Vol	-0.3	-	0.4	V		
Transmitter Disable Voltage- High	Vih	2.0	-	Vcc	V		
Transmitter Disable Voltage- low	VIL	0	-	0.8	V		
	Receiver						

黄山市光锐通信股份有限公司

HUANGSHAN OPTORAY COMMUNICATION CORP., LTD

WWW.OPTORAY.COM

Differential output voltage swing	Vout,p-p	300	-	850	mVpp	1
Output Differential Impedance	Ζουτ	90	100	110	Ω	
Deterministic Jitter	DJ	-	-	0.42	UI	
Total Jitte	TJ	-	-	0.70	UI	
LOS Output Voltage-High	Vlosh	2.0	-	Vcc	V	
LOS Output Voltage-Low	Vlosl	-	-	0.8	V	

Notes:

1. CML input/output, internally AC-coupled and terminated.

Optical Characteristics

Table 5. Optical Characteristics(Top = -5 to +70 °C, Vcc = 3.13 to 3.47 V)

Parameter	Symbol	Min	Тур	Max	Unit	Notes	
Transmitter							
Optical Center Wavelength	λc	1530	-	1565	nm		
Data Rate	BR	-	10.3125	-	Gbps		
Average Output Power	Ро	0	-	+4.0	dBm		
Optical Extinction Ratio	ER	8.2	-	-	dB		
RMS Spectral Width (-20dB)	Δσ	-	-	0.45	nm		
Side Mode Suppression Ratio	SMSR	30	-	-	dB		
Data Dependent Jitter	DDJ	-	-	0.10	UI		
Total Jitte	TJ	-	-	0.28	UI		
Transmitter and Dispersion Penalty	TDP	-	-	3.0	dB		
Average Launch power of Tx OFF	Poff	-	-	-30	dBm		
Optical Eye Mask	Con	npliant with	n IEEE 802.3	ae-2005 ar	nd ITU-T G.6	591	
	Re	ceiver					
Center Wavelength Range	λc	1260	-	1620	nm		
Data Rate	BR	-	10.3125	-	Gbps		
Receiver Sensitivity	Rsen	-	-	-22	dBm	1	
Stressed Receiver Sensitivity (OMA)	Rома	-	-	-20	dBm		
Maximum Input Power	Рмах	-7.0	-	-	dB	1	
LOS Assert	LOSA	-35	-	-	dBm		
LOS De-Assert	LOSD	-	-	-25	dBm		
LOS Hysteresis	LOSн	0.5	-	5	dB		
Receiver Reflectance	Rr	-	-	-27	dB		

WWW.OPTORAY.COM

Notes:

1. Measured with worst ER=8.2dB, RPBS 2^31-1 test pattern @10.3125Gbs BER=<10^-12.

Table 6. Timing and Electrical

Parameter	Symbol	Min	Тур	Max	Unit
Tx Disable Negate Time	t_on	-	-	1	ms
Tx Disable Assert Time	t_off	-	-	10	μs
Time To Initialize, including Reset of Tx Fault	t_init	-	-	300	ms
Tx Fault Assert Time	t_fault	-	-	100	μs
Tx Fault To Reset	t_reset	10	-	-	μs
LOS Assert Time	t_loss_on		~	100	μs
LOS De-assert Time	t_loss_off	-	-	100	μs
Serial ID Clock Rate	f_serial_clock	-	-	400	KHz
SDA, SCL, MOD_ABS High Level	Vн	2	-	Vcc	V
SDA, SCL, MOD_ABS Low Level	VL	-	-	0.8	V

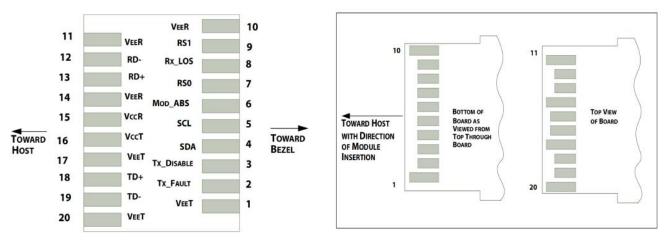
Pin Assignment

黄山市光锐通信股份有限公司 HUANGSHAN OPTORAY COMMUNICATION CORP., LTD

WWW.OPTORAY.COM

Table 7. Pin Descriptions

Pin	Symbol	Name/Description	Notes
1	VEET	Module Transmitter Ground	
2	Tx_Fault	Module Transmitter Fault	1
3	Tx_Disable	Transmitter Disable, Turns off transmitter laser output	2
4	SDA	2 wire serial interface data input/output (SDA)	1
5	SCL	2 wire serial interface clock input (SCL)	1
6	MOD_ABS	Module Absent, connected to VeeT or VeeR in the module	1
7	RSO	Receiver Rate Select	
8	Rx_LOS	Loss of Signal indication, Logic 0 indicates normal operation	3
9	RS1	Transmitter Rate Select, Not Used for this product	
10	VEER	Module Receiver Ground	
11	VEER	Module Receiver Ground	
12	RD-	Receiver Inverted Data Output, AC Coupled	4
13	RD+	Receiver Non-Inverted Data Output, AC Coupled	4
14	VEER	Module Receiver Ground	
15	VccR	Module Receiver 3.3 V Supply	
16	VccT	Module Transmitter 3.3 V Supply	
17	VEET	Module Transmitter Ground	
18	TD+	Transmitter Non-Inverted Data Input, AC Coupled	5
19	TD-	Transmitter Inverted Data Input, AC Coupled	5
20	VEET	Module Transmitter Ground	


Notes:

- 1. Open collector/drain output, which should be pulled up with a $4.7k\Omega$ to $10k\Omega$ resistor on the host board if intended for use. Pull up voltage should be between 2.0V to 3.6V. A high output indicates a transmitter fault caused by either the TX bias current or the TX output power exceeding the preset alarm thresholds. A low output indicates normal operation. In the low state, the output is pulled to <0.8V.
- 2. Laser output disabled on Tx_Disable >2.0V or open, enabled on Tx_Disable <0.8V.
- 3. LOS is open collector output. Should be pulled up with $4.7k\Omega$ to $10k\Omega$ on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.
- 4. RD-/+: These are the differential receiver outputs. They are internally AC-coupled 100Ω differential lines which should be terminated with 100Ω (differential) at the user SERDES.
- 5. TD-/+: These are the differential transmitter inputs. They are internally AC-coupled, differential lines with 100Ω differential termination inside the module.

HuangShan Optoray Communication Corp.,Ltd.

No.4PiYun Road, Huangshan Economic Development Zone, Huangshan City, Anhui, China 245000 Tel:+86 559 5290615 Fax:+86 559 2585516 Http://www.optoray.com

Pin Assignment (continued)

Figure 2. Host PCB SFP+ pad assignment top view and Names.

Digital Diagnostic Memory Map

The transceivers provide serial ID memory contents and diagnostic information about the present operating conditions by the 2-wire serial interface (SCL, SDA).

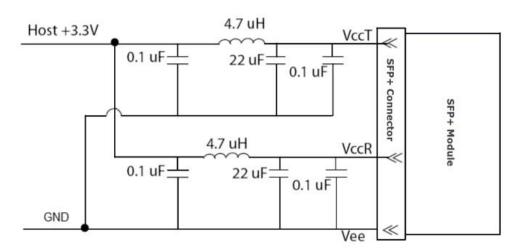
The diagnostic information with internal calibration or external calibration all are implemented, including received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring.

The digital diagnostic memory map specific data field defines as following.

Table 8. Digital Diagnostic Memory Map (Specific Data Field Descriptions)

WWW.OPTORAY.COM

Table 9. Digital Diagnostic Monitor Characteristics

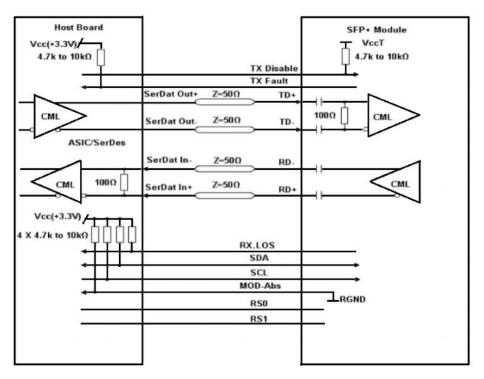

Parameter	Calibration	Range	Accuracy	Unit
Transceiver Internal Temperature	Internal	-5 to +70°C	±3.0	°C
Vcc3 Internal Supply Voltage	Internal	3.0 to 3.6V	±3.0	%
Laser Bias Current	Internal	0 to 125mA	±10	%
Tx Output Power	Internal	-1 to +5dBm	±3.0	dBm
Rx Input Power	Internal	-26 to -6dBm	±3.0	dBm

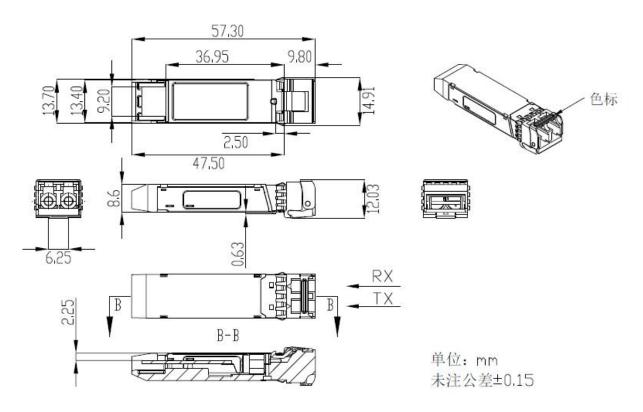
Recommended Circuit

黄山市光锐通信股份有限公司 HUANGSHAN OPTORAY COMMUNICATION CORP.,LTD

WWW.OPTORAY.COM

Figure 3, Recommended Host Board Power Supply Circuit




Figure 4, Recommended Interface Circuit

Mechanical Dimensions

黄山市光锐通信股份有限公司 HUANGSHAN OPTORAY COMMUNICATION CORP.,LTD

WWW.OPTORAY.COM

Figure 5, Mechanical Dimensions

Ordering information

Table 10. Ordering information

Part Number	Product Description
OTS-10G-ZR	Cooled 1550nm EML, APD, 10.3125Gbps, SMF 80km, -5°C ~ +70°C
OTS-10G-ZR-E	Cooled 1550nm EML, APD, 10.3125Gbps, SMF 80km, -20°C ~ +85°C
OTS-10G-ZR-I	Cooled 1550nm EML, APD, 10.3125Gbps, SMF 80km, -40°C ~ +85°C

Warnings

Handling Precautions: This device is susceptible to damage as a result of electrostatic discharge (ESD). A static free environment is highly recommended. Follow guidelines according to proper ESD procedures.

Laser Safety: Radiation emitted by laser devices can be dangerous to human eyes. Avoid eye exposure to direct or indirect radiation.